Painting
 Lesson Three: Buying Paint

Facilitator Guide

Building Basics was paid for under an EL Civics grant from the U. S. Department of Education administered by the Virginia Department of Education. It was paid for under the Adult Education and Family Literacy Act of 1998; bowever, the opinions expressed herein do not necessarily represent the position or policy of the U. S. Department of Education, and no official endorsement by the U. S. Department of Education should be inferred. This document was designed and created by the Virginia Adult Learning Resource Center at Virginia Commonvealth University, 817 West Franklin Street, Suite 221, P.O. Box 842037, Richmond, VA 23284-2020. It may be reproduced for nonprofit, educational purposes only.

Building Plan / Blue Prints / Specs (Getting Ready to Teach)

Lifeskill Objective: Learners will be able to read paint can labels and identify the type and use of the paint. They will also be able to calculate the approximate number of gallons of paint needed to paint the interior surfaces of a house. In doing so, learners will review and practice the steps in finding surface area and several other basic construction-related math functions.

EFF Skills:
Speak So Others Can Understand, Work Together, Cooperate with Others, Observe Carefully, Listen Actively, Use Math to Solve Problems and Communicate

SCANS Skills: \quad Resources (allocate facility and material resources) Interpersonal (participate as member of a team; teach others; work with individuals from a variety of ethnic, social or educational backgrounds; work and communicates with coworkers; provide basic leadership and negotiation skills)
Information (acquire, evaluate, organize, and maintain information related to the estimation of paint areas; this information is then interpreted and communicated through a variety of methods)
Systems (provide basic understanding of systems)
Technology (determine the procedures and tools needed to produce the desired results)
Lesson Length: 2 hours

Foundation: Lost in the Paint Aisle--overhead
Activity \#1: One paint can (new or used) with clean label
Paint On Sale Handout
Complete Color Palette--with gloss sample strips; from local paint store
Paint Can Labels--optional
Paint On Sale Handout--one copy with paint cans cut out for whole group chart
Activity \#2: Paint Calculation Practice Handout
Paint Calculation Practice--overhead
Activity \#3: How Much Paint Will You Need? Handout A
How Much Paint Will You Need? Handout B
How Much Paint Will You Need? Handout C

Target Vocabulary

Nouns:

circumference	depth	dimension	front	height
perimeter	rear	side	surface	surface area
view				
Verbs:	divide	equal	subtract	
add				latex
Adjectives:	deep	enamel	high	
acrylic	water-based	wide		

Laying the Foundation
Warm-Up / Presentation

Actions	Materials
1. Place the Lost in the Paint Aisle Overhead on the OHP.	Lost in the Paint
Discuss the picture using at least some of the following	
questions as prompts.	
Aisle-Overhead	
> Where is this man?	
> Why is he there?	
> What is he feeling or thinking?	
> Have you ever felt like the man in this picture?	
> If you need paint, where do you go to buy it?	
> What kind of paint were you looking for?	
> Where was it?	
> Was it easy to find?	
> Has anyone ever bought the wrong paint?	
> What happened?	
> Can you return paint to the store if you don't like it?	

Manufacturer	Place to Use	Surface Finish	Contents	Special Use?	Color
Sherwin Williams	Interior	Semi-gloss	Latex	-----	Blue

Actions	Materials
2. Tell the learners that they will be working with their groups to read the labels of the cans in the Handout and decide where each word would go in the chart. Explain that not every paint label has all of the information to go in the chart.	Paint On Sale Handout
3. Do an example with the whole group, using the label on the paint can (the real one) in front of you. Ask for volunteers to tell you where each words fits in the chart. Write the word in the correct column on the board. Have learners work in small groups to read the labels from the Handout and write the words in the correct columns in the chart. Optionally, groups may refer to real paint can labels. While the other groups are working together, assist the beginner group in reading the labels and completing the chart. Note: You will want to explain that alkyd paint is the most common form of oil-based paint.	Paint Can Paint On Sale Handout Paint Can Labels (Optional)
4. After most groups have filled out the columns on their handouts, ask for volunteers to come to the board (one at a time) and write the words in the columns for one paint label. Tape the picture of the can next to the row of words from its label. Your chart will look something like the example.	Paint On Sale Handout-Cut Up

Manufacturer	Place to Use	Surface Finish	Contents	Special Use?	Color
Sherwin Williams	Interior	Semi-Gloss	Latex	------	Blue
Glidden	Interior	Flat	Enamel	Porch	White
Zinsser	Exterior	High-Gloss	(Oil-Based)	Ceiling	Base 1
Behr	Int/Ext	Satin	Acrylic	Base	-----
Behr	Int/Ext	Semi-Gloss	Water-Based	Base	-----
Behr	Int/Ext	Eggshell	Latex	Base	---

5. After volunteers have written the terms in the columns for five or six paint labels, point to the Surface Finish or Gloss column.

Actions	Materials
Ask learners to tell you how to list these words in order of the degree of glossiness. Make a new list of the finish types, in order of glossiness. You will write this list on the board:	
flat, matte, eggshell, satin, semi-gloss, high-gloss	
Note: Some paint companies have an additional finish, sateen,	
which falls between satin and semi-gloss.	
6. In the Contents category, ask the learners to tell you which	
words refer to the same general type of paint. After the	
learners have responded, draw a circle around enamel and oil-	
based in one color marker and then another circle around	
acrylic, water-based and latex in another color marker. (See	
example chart above.) Ask learners to tell you an important	
difference between these two types of paint. Write their correct	
responses on the board. Ask learners what type of paint, oil or	
latex, they prefer to use and why.	

Actions	Materials
Activity \#2: Calculating Paint Surfaces 1. Tell learners that after choosing the paint colors and sheen, the next important step in a paint project is to calculate how much paint you need. Explain that in this part of the lesson they will learn and practice the steps in calculating the number of gallons of paint a painter needs for each job.	
2. Have learners get into groups of three. Give each learner the Paint Calculation Practice Handout. Read the terms for the dimensions of a structure and have the learners repeat each word after you.	Paint Calculation Practice Handout
3. Check that all learners understand the meanings of the terms and their use in the illustrations on the Handout.	Paint Calculation Practice Handout
4. Tell the learners to look at the instructions for calculating paint area on the Paint Calculation Practice Handout. Have several strong readers read the instructions, each taking one step to read. Be sure that the learners are placing the stress on the correct syllables in words such as perimeter, circumference, dimensions, and multiply. If learners have difficulty doing this, tap the stress pattern on the table as you say each word, and then have the learners do the same.	Paint Calculation Practice Handout
5. Ask learners to individually calculate each step and then check their answers with the other members. Ask for volunteers to tell you the correct result for each step and write that number in the correct blank in the transparency. Ask higher level group members explain their correct answers to any members that need further clarification.	Paint Calculation Practice-Overhead
6. Have groups complete the calculations for the painted surface area and number of gallons in Practice B on the Paint Calculation Practice Handout. Circulate to assist where needed.	Paint Calculation Practice Handout

Building on the Foundation Practicing the New Language

Actions	Materials
Activity \#3: Estimating Gallons of Paint	How Much Paint Will You Need?
Match learners at the same language level to work together in pairs.	Handout A Give each pair a version of the How Much Paint Will You Need? Handout, A for beginning learners, B for mid-level learners, and C for higher level learners.
Have the pairs follow the steps they practiced in Activity \#2 to determine the estimated number of gallons of paint they will need to paint the interior of the house pictured in their handout.	How Much Paint Will You Need? Handout B
Optional Extension: Explaining Calculations:	How Much Paint Will You Need? Handout C

Have each pair find a second pair with a different house example to form a new group. Each pair should sit directly across from the other.

Referring to the picture of their houses, each pair will explain their calculations to the other pair. One partner explains Steps 1-3 and the other partner explains Steps 4-6.

After each pair has finished their explanation, the learners in the other pair can ask questions and make suggestions or other comments.

Circulate to assist groups as needed.
As a whole group, discuss any questions or comments learners have.

Finishing Work

 Extension or Out-of-Class Practice

Actions	Materials	
1.Learners can practice calculating the square footage to paint for other house plans they find at the same e-plan sites listed on their copy of the How Much Paint Will You Need? Handout.	How Much Paint Will You Need? Handout	
2.	Learners can ask a salesperson at a local paint store to demonstrate the use of an electronic paint calculator.	
3.Learners calculate the number of gallons of paint needed to paint the walls of rooms in their homes that they would like to paint.		

Painting
 Lesson Three: Buying Paint

Facilitator Materials

Building Basics was paid for under an EL Civics grant from the U. S. Department of Education administered by the Virginia Department of Education. It was paid for under the Adult Education and Family Literacy Act of 1998; bowever, the opinions expressed berein do not necessarily represent the position or policy of the U. S. Department of Education, and no official endorsement by the U. S. Department of Education should be inferred. This document was designed and created by the Virginia Adult Learning Resource Center at Virginia Commonwealth University, 817 West Franklin Street, Suite 221, P.O. Box 842037, Richmond, VA 23284-2020. It may be reproduced for nonprofit, educational purposes only.

Activity \#1: Reading Paint Labels

Manufacturer	Place to Use	Surface Finish	Contents	Special Use?	Color
Old Time	------	------	Alkyd Enamel	Porch \& Floor	Richmond Red
Renewal	Exterior	------	Latex	Floor	Annapolis Blue
Old Time	Exterior	------	Water-Based	Primer	White
Cover All		------	Alkyd	Primer	------
In Style	Exterior	Semi-Gloss	Latex	------	White
Express Yourself	Interior	Flat	Latex	------	Salmon
Clean + Bright	Interior	Satin	------	Mildew Proof	-----
Like New	Interior	Flat	-----	Ceiling Paint	Bright White
American Heritage	Interior	Satin	Acrylic	Wall and Trim	---
Renewal	Interior	Semi-Gloss	Acrylic Enamel	--	------
Cover All	Exterior	Satin	-----	House and Trim	Capital Grey
New Home	-----	High Gloss	Enamel	Metal \& Wood	Shenandoah Green
Wild Tangent	Interior	Matte	Latex	------	Tahiti Green
American Heritage	Exterior	Flat	Latex	Base 1	------
Clean + Bright	---	Semi-Gloss	-----	Kitchen and Bath	Off White

Activity \#2: Paint Calculation Practice

Practice A Instructions

To find out how much paint you need to paint the exterior of a structure, you need to know the dimensions of the structure. These are the width, the depth, and the height of the structure.

Step 1 Add the width and depth of the four sides of the structure to get the perimeter or the circumference of the structure.
front width + right depth + back width + left depth $=$ perimeter or circumference
$55^{\prime}+30^{\prime}+55^{\prime}+30^{\prime}=170^{\prime}$

Step 2 Multiply the perimeter by the height of the structure to get the total surface area of the outside walls you will paint.
$170^{\prime} \times 38^{\prime}=\mathbf{6 4 6 0} \mathbf{~ s q ~ f t}$

Step 3 Count the standard windows. Multiply this number by 15 sq ft .
Count the large windows. Multiply this number by 21 sq ft .
Count the single doors. Multiply this number by 25 sq ft .
Count the double doors. Multiply this number by 40 sq ft .

Non-painted area in sq ft

standard windows	4	x	$15 \mathrm{sq} \mathrm{ft}=$	$\mathbf{6 0}$
large windows	4	x	$21 \mathrm{sq} \mathrm{ft}=$.	$\mathbf{8 4}$
single doors	2	x	$25 \mathrm{sq} \mathrm{ft}=$	$\mathbf{5 0}$
double doors	1	x	$40 \mathrm{sq} \mathrm{ft} .=$	$\mathbf{+}$
	$\mathbf{4 0}$			
	Non-painted area in sq ft			

Step 4 Add the number of square feet for all of the windows and doors.

Step 5 Subtract the total number of square feet of non-painted areas from the total surface area that you will paint.

$$
\begin{array}{lr}
\text { Total Surface Area } & 6460 \mathrm{sq} \mathrm{ft} \\
\text { Non-painted Area } & -\underline{\mathbf{2 3 4}} \mathrm{sq} \mathrm{ft} \\
\text { Paint Surface Area } & \mathbf{6 2 2 6} \mathrm{sq} \mathrm{ft}
\end{array}
$$

Step 6 Divide the paint surface area by $400 \mathbf{s q ~ f t}$. (One gallon of paint covers about $400 \mathrm{sq} \mathrm{ft)}$.
$400 \sqrt{6226}$
Number of gallons of paint needed: $\underline{15.5} \mathrm{gal}$

Practice B Instructions

Do this practice together with your group.

Calculate the number
of gallons you need to paint the sides of this building.

Step 1 Add the width and depth of the four sides of the structure to get the perimeter or the circumference of the structure.
front width + right depth + back width + left depth $=$ perimeter or circumference
$\underline{81} \mathrm{ft}+\underline{52} \mathrm{ft} \underline{81} \mathrm{ft}+\underline{52}=\underline{266} \mathrm{ft}$

Step 2 Multiply the perimeter by the height of the structure to get the total surface area of the outside walls you will paint.
$\underline{266} \mathrm{ft} \times \underline{21} \mathrm{ft}=\underline{\mathbf{5 5 8 6}} \mathrm{sq} \mathrm{ft}$

Step 3 Count the standard windows. Multiply this number by 15 sq ft .
Count the large windows. Multiply this number by 21 sq ft .
Count the single doors. Multiply this number by 25 sq ft .
Count the double doors. Multiply this number by 40 sq ft .

Unpainted area in sq ft

Step 4 Add the number of square feet for all of the windows and doors.
Step 5 Subtract the total number of square feet of unpainted areas from the total surface area that you will paint.

$$
\begin{array}{lc}
\text { Total Surface Area } & \mathbf{5 5 8 6} \mathrm{sq} \mathrm{ft} \\
\text { Unpainted Area } & -\underline{267} \mathrm{sq} \mathrm{ft} \\
\text { Paint Surface Area } & \mathbf{5 3 1 9}
\end{array}
$$

Step 6 Divide the paint surface area by $\mathbf{4 0 0} \mathbf{~ s q} \mathrm{ft}$. (One gallon of paint covers about 400 sq ft .)
$400 \sqrt{5319}$

Number of gallons of paint needed: $\mathbf{1 3 . 3} \mathrm{gal}$

Activity \#3: How Much Paint Will You Need?

Handout A 细品
House \#1 "Simply the Best"

Painting
Buying Paint
Virginia Adult Learning Resource Center
Plan HWEPL06999
http://www.eplans.com
Used with permission from eplans.com

Instructions: Estimate the number of gallons of paint you will need to paint the walls in these rooms. The ceiling height in these rooms is 9.0 ft .

- the three bedrooms
- the dining room
- the foyer

Room	Total room area in sq ft	Unpainted areas in sq ft	Room area to be painted in sq ft	Number of gallons needed
Bedroom \#1*	558	85	473	1.2
Bedroom \#2	420	55	365	.9
Bedroom \#3	456	95	361	.9
Foyer	342	90	252	.6
Dining room	384	95	289	.7
			Total gallons	4.3

*See Facilitator Notes on next page for detailed solving information and special considerations.

Facilitator Notes

Bedroom \#1 (Master Bedroom)

Perimeter: $14+17+14+17=69 \mathrm{ft} x 9^{\prime}$ ceilings $=558 \mathrm{sq} \mathrm{ft}$ surface area (Total room area)

4 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 single door $\times 25 \mathrm{sq} \mathrm{ft}=25 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=85 \mathrm{sq} \mathrm{ft}$
*There are a variety of ways to address the alcove in the bottom left corner of the master bedroom. The simplest, used here, is to count the bottom corner of the bedroom as solid (do not subtract the main door). The "extra paint" can be used for the alcove walls.
$558-85=473 \mathrm{sq} \mathrm{ft}$ (Room area to be painted)
$473 / 400=1.1825$ or 1.2 gallons of paint needed**
Bedroom \#2 (Topmost Bedroom, Left)
Perimeter: $11^{4}+12+11^{4}+12=46^{8} \mathrm{ft} \quad$ *For some rooms, calculating surface area will require conversion $46^{8} \times 12$ (inches in a foot) $=560^{\prime \prime}$
9^{\prime} ceilings x 12 inches in a foot $=108$ in 2 $560 " \times 108^{\prime \prime}=60,480$ in 2 (Total room area) $12^{\prime \prime} \times 12^{\prime \prime}=144^{\prime \prime}$ per sqare foot
$60,480 / 144=420 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 single door $\times 25 \mathrm{sq} \mathrm{ft}=25 \mathrm{sq} \mathrm{ft}$
1 double door $\mathrm{x} 40 \mathrm{sq} \mathrm{ft}=40 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=95 \mathrm{sq} \mathrm{ft}$ between feet and inches (the method used throughout these notes). You may choose, especially with beginning students, to introduce the concepts of rounding and estimation. Students could round $46^{8} \mathrm{ft}$ to 47 feet, resulting in a Total room area of $423 \mathrm{sq} \mathrm{ft}$. closer estimation, be sure to tell students to round after adding the perimeter $\left(46^{8}\right.$ becomes 47 ; rather than 11^{4} becomes 11 , giving a perimeter of 46 and a Total room area of only 414 sq ft .) Rounding will result final answers slightly different from those given in the $420-95=325 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 325 / 400=.8125$ or .8 gallons of paint needed **

Bedroom \#3 (Lower Bedroom, Bottom Left Corner)

Perimeter: $13^{8}+11^{8}+13^{8}+11^{8}=48^{32}=50^{8} \mathrm{ft}=608^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=65,664 \mathrm{in}^{2}=456 \mathrm{sq} \mathrm{ft}$ (Total room area) 2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 single door $\mathrm{x} 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$
*Be sure learners remember to include closet doors in their
1 double door $\mathrm{x} 40 \mathrm{ft}^{2}=40 \mathrm{sq} \mathrm{ft}$ calculations.
Unpainted areas $\quad=95 \mathrm{sq} \mathrm{ft}$
$456-95=361 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 361 / 400=.9025$ or .9 gallons of paint needed ${ }^{* *}$

Foyer

Perimeter: $7^{4}+11^{8}+7^{4}+11^{8}=36^{24}=38 \mathrm{ft} \times 9^{\prime}$ ceilings $=342 \mathrm{sq} \mathrm{ft} \mathrm{surface} \mathrm{area} \mathrm{(Total} \mathrm{room} \mathrm{area)}$
2 single doors $\times 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft}$
1 double door $\mathrm{x} 40 \mathrm{ft}^{2}=40 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=90 \mathrm{sq} \mathrm{ft}$
$342-90=252 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 252 / 400=.63$ or .6 gallons of paint needed ${ }^{* *}$

Dining Room

Perimeter: $14^{8}+11^{8}+14^{8}+11^{8}=40^{32}=42^{8} \mathrm{ft}=512^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=55,296 \mathrm{in}^{2}=384 \mathrm{sq} \mathrm{ft}$ (Total room area) 2 windows $\mathrm{x} 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 single door $\times 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$
1 double door $\mathrm{x} 40 \mathrm{ft}^{2}=40 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=95 \mathrm{sq} \mathrm{ft}$
384-95 $=289 \mathrm{sq} \mathrm{ft}$ (Room area to be painted)
$289 / 400=.7225$ or .7 gallons of paint needed**
**General Note on Rounding: Rounding to the tenth decimal point is recommended. Rounded scores will differ slightly from unrounded scores. For example, rounding to the tenth place in this activity gives a total of 4.2 gallons of paint needed, while using the unrounded decimals provided by a common hand calculator will result in a total of 4.25 or 4.2 gallons of paint needed.

Activity \#3: How Much Paint Will You Need?

House \#2 Cape Cod Charmer

front view

Plan HWEPL00515
http://www.eplans.com
Used with permission from eplans.com

How Much Paint Will You Need? Handout B Lesson Three Facilitator Materials

Instructions: Estimate the number of gallons of paint you will need to paint these rooms. The ceiling height in each room is 9.0 ft .

- the living room
- the three bedrooms
- the study
- the dining room

Room	Total room area in sq ft	Unpainted areas in sq ft	Room area to be painted in sq ft	Number of gallons needed
Living room	531	110	421	1
Bedroom \#1	534	160	374	.9
Bedroom \#2	495	80	415	1
Bedroom \#3	427^{6}	80	347^{6}	.9
Study	381	40	341	.9
Dining room	417	95	322	.8
			Total gallons	5.5

*See Facilitator Notes on next page for detailed solving information and special considerations.

Facilitator Notes

Living Room

Perimeter: $12+17^{6}+12+17^{6}=59 \mathrm{ft} \times 9^{\prime}$ ceilings $=531 \mathrm{sq} \mathrm{ft}$ (Total room area)
4 windows $x 15 \mathrm{sq} \mathrm{ft}=60 \mathrm{sq} \mathrm{ft} \quad *$ See Facilitator Notes to How Much Paint Will You Need?
2 single door $\times 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft} \quad$ Handout \mathbf{A} for notes on feet-to-inches conversion.
Unpainted areas $\quad=110 \mathrm{ft}$
$531-110=421 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 361 / 400=1$ gallon of paint needed ${ }^{* *}$
Bedroom \#1 (Master Bedroom)
Perimeter: $12^{6}+17^{2}+12^{6}+17^{2}=49^{4}=712^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=76,896$ in $^{2}=534 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
2 single doors $\times 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft}$
2 double doors $\mathrm{x} 40 \mathrm{ft}^{2}=80 \mathrm{sq} \mathrm{ft}$
*Be sure learners remember to include closet doors in their calculations.
Unpainted areas $\quad=160 \mathrm{sq} \mathrm{ft}$
$534-160=374 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 374 / 400=.9$ gallons of paint needed ${ }^{* *}$

Bedoom \#2

Perimeter: $13^{8}+13^{10}+13^{8}+13^{10}=52^{36}=55 \times 9^{\prime}$ ceilings $=495 \mathrm{sq} \mathrm{ft}$ (Total room area)
1 window x $15 \mathrm{sq} \mathrm{ft}=15 \mathrm{sq} \mathrm{ft}$
1 single door $\mathrm{x} 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$
1 double door $\mathrm{x} 40 \mathrm{ft}^{2}=40 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=80 \mathrm{sq} \mathrm{ft}$
$495-80=415$ sq ft (Room area to be painted) $\quad 415 / 400=1$ gallon of paint needed ${ }^{* *}$

Bedroom \#3

Perimeter: $12^{6}+10^{10}+12^{6}+10^{10}=49^{4}=712^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=76,896$ in $^{2}=427^{6}$ sq ft (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
2 single doors $\mathrm{x} 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=80 \mathrm{sq} \mathrm{ft}$
$427.5-80=347.5 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 347.5 / 400=.9$ gallons of paint needed ${ }^{* *}$

Study

Perimeter: $9^{10}+11^{4}+9^{10}+11^{4}=40^{28}=42^{4}=508^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=54,864 \mathrm{in}^{2}=381 \mathrm{sq} \mathrm{ft}$ (Total room area)
1 window x $15 \mathrm{sq} \mathrm{ft}=15 \mathrm{sq} \mathrm{ft}$
1 single door $\times 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=40 \mathrm{sq} \mathrm{ft}$
$381-40=341$ sq ft (Room area to be painted) $\quad 341 / 400=.9$ gallons of paint needed ${ }^{* *}$

Dining Room

Perimeter: $12+17^{6}+12+17^{6}=59 \mathrm{ft} \times 9^{\prime}$ ceilings $=417 \mathrm{sq} \mathrm{ft}$ (Total room area)
4 windows $\mathrm{x} 15 \mathrm{sq} \mathrm{ft}=60 \mathrm{sq} \mathrm{ft} \quad{ }^{* *}$ General Note on Rounding: Paint gallons have been
2 single doors $\times 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=95 \mathrm{sq} \mathrm{ft}$
$417-95=322 \mathrm{sq} \mathrm{ft}$ (Room area to be painted)
$322 / 400=.8$ gallons of paint needed ${ }^{* *}$
rounded to the tenth place. Rounded scores will differ slightly from unrounded scores. For example, this activity results in the round figure of 5.5 paint gallons needed, while using the unrounded decimals provided by a common hand calculator results in 5.55125 , or 5.6 paint gallons needed.

Activity \#3: How Much Paint Will You Need?

House \#3 Craftsman Character

Instructions: Estimate the number of gallons of paint you will need to paint the walls in these rooms. The ceiling height in each room is 9.0 ft .

- the living room (great room)
- two bedrooms
- master bedroom
- the bedroom/study
- the dining room

Room	Total room area in sq ft	Unpainted areas in sq ft	Room area to be painted in sq ft	Number of gallons needed
Living room	543	165	378	.9
Bedroom \#1	450	120	330	.8
Bedroom \#2	456	130	326	.8
Master Bedroom	534	90	444	1.1
Bedroom/Study	450	101	349	.9
Dining room	486	156	330	.8
			Total gallons	5.3

*See Facilitator Notes on next page for detailed solving information and special considerations.

Facilitator Notes

Living Room

Perimeter: $20+20^{2}+20^{2}=60^{40}=724^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=78,192 \mathrm{in}^{2}=543 \mathrm{sq} \mathrm{ft}$ (Total room area)
4 windows $\times 15 \mathrm{sq} \mathrm{ft}=60 \mathrm{sq} \mathrm{ft} \quad$ *There are a variety of approaches in deciding how to calculate the 1 single door $\mathrm{x} 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$ surface area of the Great Room, taking into account the openness of 2 double doors $\mathrm{x} 40 \mathrm{ft}^{2}=80 \mathrm{sq} \mathrm{ft}$ the design. Here, one 20^{\prime} wall (the lower wall) has been left out of Unpainted areas $=165 \mathrm{sq} \mathrm{ft}$ the calculations. Because there is, in fact, some paintable area 543-165 $=378 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) on the lower wall, one $25 \mathrm{ft}^{2}$ door has also been left out of $378 / 400=.9$ gallons of paint needed** calculation (failing to subtract the door provides "extra paint" for the segments of the lower wall). The fireplace and the bar leading to the kitchen have been treated as $40 \mathrm{ft}^{2}$ doors. The shelves have not been included in the "Unpainted areas" calculation.

Bedoom \#1 (Topmost Bedroom, Left)

Perimeter: $14+11+14+11=50 \mathrm{ft} \times 9$ ' ceilings $=450 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
2 single doors x $25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft} \quad *$ See Facilitator Notes to How Much Paint Will You Need?
1 double door x $40 \mathrm{ft}^{2}=40 \mathrm{sq} \mathrm{ft} \quad$ Handout A for notes on feet-to-inches conversion.
Unpainted areas $\quad=120 \mathrm{sq} \mathrm{ft}$
$450-120=330 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 330 / 400=.8$ gallons of paint needed ${ }^{* *}$

Bedoom \#2 (Lower Bedroom, Left)

Perimeter: $14+11^{4}+14+11^{4}=50^{8}=608^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=65,664^{\prime \prime}=456 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft} \quad * B e$ sure learners remember to include closet doors in their 4 single door $\times 25 \mathrm{ft}^{2}=100 \mathrm{sq} \mathrm{ft} \quad$ calculations. Unpainted areas $\quad=130 \mathrm{sq} \mathrm{ft}$ 495-80 = 415 sq ft (Room area to be painted) $\quad 415 / 400=1$ gallon of paint needed ${ }^{* *}$

Master Bedroom

Perimeter: $13^{4}+16^{4}+13^{4}+16^{4}=58^{16}=59^{4}=712^{\prime \prime} \times 108^{\prime \prime}$ ceilings $=76,896$ in $^{2}=534 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 single door $\mathrm{x} 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft} \quad$ *There are a variety of ways to approach this bedroom's 1 double door $\mathrm{x} 40 \mathrm{ft}^{2}=40 \mathrm{sqft}$ convergence with the sitting room. You may want to teach Unpainted areas $\quad=40 \mathrm{sq} \mathrm{ft}$ $534-90=444 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $444 / 400=1.1$ gallons of paint needed ${ }^{* *}$ advanced learners how to subtract the dimensions of the sitting room dimensions from the left and upper walls of the bedroom. In these calculations, the sitting room has been ignored; the left corner of the bedroom is treated as paintable area. Another alternative is to estimate the missing corner. For example, estimating the missing area to be approximately the area of three double doors would yield an Unpainted areas total of 210 sq ft , with room area to be painted 324 ft , or .8 gallons. This would impact the overall totals, yielding a final result of 5 rather than 5.3 gallons of paint needed.

Bedoom/ Study

Perimeter: $12+13+12+13=50 \mathrm{ft} x 9$ ' ceilings $=450 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 large window $\times 21 \mathrm{ft}^{2}=21 \mathrm{sq} \mathrm{ft}$
2 single doosr $\times 25 \mathrm{ft}^{2}=50 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=101 \mathrm{sq} \mathrm{ft}$
$450-101=349 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 349 / 400=.9$ gallons of paint needed ${ }^{* *}$

Dining Room

Perimeter: $12+15+12+15=54 \mathrm{ft} \times 9$ ' ceilings $=486 \mathrm{sq} \mathrm{ft}$ (Total room area)
2 windows $\times 15 \mathrm{sq} \mathrm{ft}=30 \mathrm{sq} \mathrm{ft}$
1 large window $\times 21 \mathrm{ft}^{2}=21 \mathrm{sq} \mathrm{ft}$
1 single door $\mathrm{x} 25 \mathrm{ft}^{2}=25 \mathrm{sq} \mathrm{ft}$
2 double doors $\times 40 \mathrm{ft}^{2}=80 \mathrm{sq} \mathrm{ft}$
Unpainted areas $\quad=156 \mathrm{sq} \mathrm{ft}$
$486-156=330 \mathrm{sq} \mathrm{ft}$ (Room area to be painted) $\quad 330 / 400=.8$ gallons of paint needed ${ }^{* *}$
**General Note on Rounding: Paint gallons have been rounded to the tenth place. Rounded scores will differ slightly from unrounded scores. For example, this activity results in the round figure of 5.3 paint gallons needed, while using the unrounded decimals provided by a common hand calculator results in 5.3925 or 5.4 paint gallons needed.

